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Abstract. Deep neural networks (DNNs) are a key technique in mod-
ern artificial intelligence that has provided state-of-the-art accuracy on
many applications, and they have received significant interest. The re-
quirements for ubiquity of smart devices and autonomous robot systems
are placing heavy demands on DNNs-inference hardware, with high re-
quirement for energy and computing efficiencies, along with the rapid de-
velopment of Al techniques. The high energy efficiency, computing capa-
bilities, and reconfigurability of FPGAs make these a promising platform
for hardware acceleration of such computing tasks. This paper primarily
addresses this challenge and proposes a new flexible hardware accelerator
framework to enable adaptive support for various DL algorithms on an
FPGA-based edge computing platform. This framework allows run-time
reconfiguration to increase power and computing efficiency of both DNN
model/software and hardware, to meet the requirements of dedicated
application specifications and operating environments. The achieved re-
sults show that with the proposed framework is capable to reduce energy
consumption and processing time up to 53.8% and 36.5% respectively by
switching to a smaller model. In addition, the time and energy consump-
tion are further elaborated with a benchmark test set, which shows that
how input data in each frame and size of a model can affect the perfor-
mance of the system.

Keywords: Deep Neural Networks, Hardware Accelerator, Edge Computing,
real-time video analytics, FPGAs

1 Introduction

Due to the recent advancement of digital technologies, deep neural networks
(DNNs) have emerged as a key technique in modern artificial intelligence (AI),
that provides state-of-the-art accuracy for many applications [1]. Generally speak-
ing, DNN models inference technique can be adopted wide range of devices, i.e.
CPU, ASIC, FPGA, GPU, Microcontroller. While for CPU and GPU implemen-
tation, these techniques are available for a wide range of DNN models. For ASIC
and FPGA implementation, although they are commonly applied in embedded



fields [2], the techniques and tools supported in DNNs applications are relatively
new. Different hardware platforms have different advantages, depending on the
applications and user requirements. For our paper, we focus on FPGA based
heterogeneous platform. FPGA based DNN model implementation can deliver
better performance and energy efficiency compare to CPU and GPU [3]. We
conclude this statement from the previous researches, proposed different kinds
of FPGA based accelerators [3-6] to improve overall performance.

Although it is important to choose a hardware, it is also important to under-
stand the application, implementation technique and tool’s availability. Usually,
we focus to solve a problem by applying single model. But it may not seem to
be the best solution. In [7], it is showed that for image classification purpose
switching between different models based on the input increases overall perfor-
mance. They demonstrated their idea in a GPU-based environment. In [8], au-
thors focused on available resource monitoring in run-time to switch between the
pre-defined models in a CPU-GPU environment. To be able to switch between
different models, it must be necessary to generate multiple models based on the
necessity. Here comes the idea of neural architectural search (NAS) [9]. Multiple
model generation, model switching to improve performance, model switching to
improve resource usability, these three aspects drive our motivation to propose a
new framework for the FPGA based heterogeneous environment where we will be
able to switch between the models in order to improve performance and resource
usability.

In this paper, we present an improved flexible hardware accelerator frame-
work, that can provide a significant level of adaptability support for various DL
algorithms on an FPGA-based edge computing platforms. The platform can dy-
namically configure hardware and software processing pipelines to achieve better
cost, power, and processing efficiency for the dedicated application requirements
at run-time. To demonstrate the effectiveness of the proposed solution, we imple-
ment our framework for a DNNs based real-time video processing pipeline on a
Xilinx ZCU104 platform, where we carry out a set of comprehensive experiment
tests to evaluate the performance of the proposed scheme.

The achieved results show that with the proposed framework is capable to
reduce energy consumption and processing time up to 53.8% and 36.5% respec-
tively by switching a smaller model. With a further discussion on time and power
cost of the framework, a algorithm could be developed to define a strategy to
control the switching behavior to achieve the optimised system performance. In
summary, we make the following novel contributions in this paper:

— We propose an improved flexible DNN hardware accelerator framework that
can dynamically configure the hardware and software processing pipelines to
achieve improved power consumption and latency performance metrics.

— We have carried out comprehensive evaluations of DNN model sizes and in-
ference performance, when using Xilinx DPUs in video analytic applications.

— We build a complete DNNs based real-time video processing pipeline and
evaluate the effectiveness of the proposed framework.



— We designed a benchmark tool set to further analysis time and energy con-
sumption of the framework.

The paper is organized as follows: Section 2 introduces the overall system.
Section 3 briefly explains the DNN model optimisation strategy. Section 4 de-
tails the hardware and software pipeline setups. Section 5 details the experiments
carried out under different scenarios and evaluates, compares, and discusses the
results, Section 6 details the time and energy consumption of the proposed frame-
work, and Section 7 draws conclusions and future plans.

2 Overview of the proposed system

The proposed scheme can support one to n implementations and can offer a
great level of flexibility and run-time efficiency for run-time video analytics ap-
plications. The proposed system consists of three main software components: 1)
Neural network architecture search algorithms, that can generate different sub-
networks with given constraints, 2) Neural network model compilation that can
convert sub-networks into FPGA focused executing formats, and 3) Run-time
management that can support dynamic execution of sub-networks on heteroge-
neous devices. A high-level overview diagram is presented in Fig 1.
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Fig. 1. The system architecture of the proposed scheme.



2.1 Neural network architecture search

Neural network architecture search (NAS) is a popular technologies to reduce the
size of the neural networks. Generally, the NAS algorithm does not consider the
target hardware architecture and run-time conditions directly because it lacks
accurate cost information to feedback to the NAS algorithm. For example, one
to one NAS optimisation is able to generate a network architecture Net; that
meets the design requirements of accuracy a; > A, power consumption p; < P,
and latency [; < L. However, during run-time inference, the input data might be
challenging. The accuracy does not meet the designed parameters, e.g. a; < A.

Consequently, the power consumption and latency could increase accordingly
due to longer processing time required. Recent work proposed by [10] introduced
an interesting NAS method, OFA that can produce a variety of network archi-
tectures based on the constraints of latency and accuracy. In this paper, we
integrate OFA into a joint optimisation tool-chain, that can take advantage of
this approach to produce a one to n inference model to meet various needs at
run-time. The details of this optimisation approach are introduced in Section 3.

2.2 Neural network model compilation

Network models developed in the mainstream frameworks needs to be mapped
into a high-efficient instruction set and data flow for the targeted hardware
platform. In this work, we use Vitis-AI to generate complied network model,
where 32-bit floating-point weights and activations are converted 8-bit fixed-
point [11]. Ultimately, the AT model is mapped into a high-efficient instruction
set and data flow along with sophisticated optimisations, such as layer fusion,
instruction scheduling, and reuses on-chip memory as much as possible by Vitis-
AL

2.3 Software and hardware run-time management

The run-time management of this system is implemented using Vitis AT Run-
time (VART), which enables the applications to use the unified high-level run-
time API. VART offers asynchronous submission and collection of jobs to the
accelerator and supports multi-threading, and multi-process execution [12].

3 DNN model optimisation

3.1 Brief introduction of OFA

OFA [10] consists mainly of 5 blocks, and in each block (i.e. convolution layers
unit), depth, width and weight kernel size can be varied as per the following
example: depth D = {2,3,4}, width W = {3,4,6}, kernel size K = {3,5,7},
where D, W and K represents the number of convolution layers and channels,
size of filters in a single block respectively. It is assumed that each variable is
independent to each other, so, number of subnetworks will be ((3 x 3)% + (3 x



3)3+(3x3)*)% ~ 2 x10°. In OFA, any model like Resnet [13] and Mobilenet [14]
can be utilised and trained progressively, while maintaining the variability in
depth, width, or kernel size. To identify a subnetwork from this vast number
of subnetworks, they used latency and accuracy as a constraint in the random
search and evolutionary search algorithms.

3.2 Model generation and optimisation

We use the OFA trained network as a super network and its searching algorithms
to generate multiple subnetworks according to our requirements. The latency is
firstly used as an input parameter in the search algorithm. Fig 2 describes the
model generation technique, where the model is optimised in terms of latency and
accuracy. In the OFA framework, random search is first used to determine a set
of subnetworks (Subnet N) that are close to the defined latency. Evolutionary
search is then used to identify the subnetworks (Subnet K) with the highest
accuracy among the previously selected subnetworks.
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Fig. 2. The model generation and optimisation technique.

4 System hardware/software co-design

4.1 Hardware architecture

A real-time DNN based video analytic system typically includes four parts: 1)
video decoding, 2) preprocessing (e.g. resize and normalisation), 3) DNN inference
and 4) post-processing. Because both DNN, inference and other processes, re-
quire significant computational resources, the acceleration design should consider
DNN inference and other processing tasks. Therefore, in addition, to deploying
the DNN inference, hardware accelerators for video decoding and preprocessing
should also be deployed. However, as the requirements of post-processing algo-
rithms vary in different DNN models, the post-processing tasks are implemented
in software.



The overall system architecture is shown in Fig. 3. There are mainly three
types of accelerators: 1) Xilinx H.264/H.265 video Codec unit (VCU) [15], which
is a hardware IP used for video coding and decoding tasks; 2) Preprocessing
module, which is a high level synthesis (HLS) implemented hardware module and
dedicated for resizing and normalisation tasks; and 3) Deep learning processing
units (DPUs), used for deep learning inference tasks, which can be reconfigured
in different scenarios at run-time.
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Fig. 3. The hardware architecture of the proposed platform.

To process video streams in real-time, the input video stream will be firstly
decompressed by the VCU, so that the video stream is converted into separate
frames. Secondly, the preprocessing core will carry out resize and pixel value
normalisation on each frame. Both the VCU and preprocessing modules in this
system can process up to 3840 x 2160 pixels at 60 frames per second, which has
been set to 1080p video streams in our experimental scenarios. Therefore, the
system’s bottleneck should not be the VCU or preprocessing modules. Instead,
the system performance will most likely be limited by the DPUs and other
processes. Hence our ultimate goal is to reconfigure them at run-time to achieve
the optimal performance for the entire system.

4.2 Software implementation

For the software part, we developed video analytic applications using Vitis Video
Analytics SDK (VVAS) [12], a GStreamer-based plugin development framework.
The Gstreamer runs video processing pipelines in multi-threads. Hence, we can
precisely control the DNN inference processes by introducing several customised
plugins for multiple video analytic applications.

Fig. 4 shows two types of pipelines representing different video analytic ap-
plications. ‘Pipeline (a)’ represents a typical one-stage video analytic application
(e.g. object detection and segmentation), where only one DNN model is used to
conduct an inference once per frame. ‘Pipeline (b)’ represents a two-stage video
analytic application (e.g. tracking, Re-Identification, and car plates detection),



where two DNN models are executing simultaneously, and the second one may
execute multiple times, due to detection results of the first one.
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Fig. 4. Video processing pipelines in the proposed system. (a) represents an applica-
tion with one stage Al inference task. (b) represents an application with two-stage Al
inference task.

4.3 Communication between processes

We design a pair of communication interfaces (e.g., read and write communi-
cations) in DNN inference plugins, to report DNN inference information and
control its run-time DNN model process. While the pipeline is running, the ex-
ecution time of the DNN model, processing time of pipeline and the power con-
sumption of the entire system will be simultaneously sent to a separate system
management thread. According to the real-time performance metrics from the
system, the processing pipeline can be reconfigured accordingly. In our previous
work, [16], it is concluded that power and computing efficiency of the proposed
system can be further improved by hardware reconfiguration, when workloads
of the system are increased.

The design of the communication framework is shown in Fig. 5. There are
three software layers, including 1) Python management interfaces for user con-
trol, 2) Gstreamer applications to run Al inference and 3) system info (e.g.,
hardware temperature and power consumption). In the work, the system info is
recorded in Proc file system (a virtual file system in Linux). During run-time,
Gstreamer applications continuously read the virtual via file IO interfaces. Each
time when a virtual file is read, a function will be triggered to read sensor data.
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Fig. 5. Design of the communication framework.

The history data points are stored in applications. If necessary, the data can
also be passed to the Python management program via the name pipe interface.
The named pipe interface is the main method to transfer data between applica-
tions and management programs. Applications can send real-time status to or
get commands from the management program. The “post” plugin in Gstreamer
applications is a key module to collect system info (e.g., power) and running
status (e.g., FPS). It is also responsible for transferring inference results. If the
output result contains massive data (e.g., semantic segmentation), it will use file
IO to store output results.

5 Experiments

In this section, experimental setup and results are comprehensively reported. A
typical real-time video processing pipeline is implemented on a Xilinx ZCU104
(XCZUTEV) for both car and pedestrian detection and classification via analytic
applications.

5.1 Overall system setup

We implement the proposed video analytics framework on a Xilinx ZCU104
(XCZUTEV-2FFVC1156 MPSoC) development platform, where each frame fol-
lows the architecture of the pipeline described below:

1) The input: the video streams are loaded to the pipeline; 2) Pre-processing
unit: carries out resizing and normalisation functions to allow the processed
video data streams to meet the input requirements of DNN models; 3) Object
detection DNN inference: deployment of object-detect DNN model on DPUs (e.g.
YOLOv3 for cars and Refinet for pedestrians detection respectively [17,18]);



4) Image cropping: cropping detected objects in each video frame and send
them to a second Al inference module for more precise classification tasks; 5)
Object classification: deployment of Resnet-50 based backbone networks, and the
network models are generated with different sizes based on the OFA algorithm.

Configuration The proposed design is implemented using Xilinx Vivado 2021.1,
VVAS 1.0 framework and PetaLinux 2021.1 on a Xilinx ZCU104 evaluation plat-
form, video streams (1920 x 1080@Q30F P.S) are used for testing. We deploy and
integrate two DPUs (i.e. B3136) in the video processing pipeline (i.e. Fig 3). The
detailed hardware utilization are reported in Table 1 and Table 2.

Table 1. Hardware resource utilisation

LUT LUTRAM FF BRAM DSP

Used 144,913 13,599 247,407 261 1,217
Available 230,400 101,760 460,800 312 1,728
Utilisation (%) 62.9 13.4 53.7 835 704

Table 2. Sub-module resource utilisation

Sub module LUT Register BRAM DSP
DPU 47667 85778 210 436
VPU 105 24 0 0
Pre-processing unit 13147 17390 12 40

5.2 DNN model management

We use Xilinx Vitis-AI 1.4.1 tool-chain to convert Pytorch DNN models into
xmodel files. By scaling DNN models based on the OFA searching strategy, we
obtain three different sizes of OFA-resnet-50 models: OFA700, OFA1000 and
OFA2000. The number after each OFA model represents million floating-point
operations per second (MFLOPs), which is used as the threshold of the sub-
net searching in the OFA algorithm. Because 700 is the lowest value from all
selected sub-networks and when value above 2000 the model size will increase
with less accuracy improved, and we select 700 and 2000 to represent a large
model and a small model separately and select 1000 as a medium one. Table 3
summarises a list of models used in our experiments, which includes a number
of sub-networks generated by using the OFA network. The communication in-
terfaces introduced in Section 4.C are implemented to update the DNN models
at frame level dynamically.



Table 3. Parameters of the used DNN models

Model Parameter size Workload Accuracy
(MB) (MOPS) (Topl/Top5 ImageNet-1k)
OFA700 10.75 1340.61 74.9%/92.4%
OFA1000 18.02 1905.48 77.0%/92.8%
OFA2000 32.88 3805.47 79.7%/94.7%
ResNet-50 26.22 7360.32 83.2%/96.5%

In our experiment, we have verified the effectiveness of this management
scheme using a DNN powered car/pedestrian re-identification application, where
a two-stage DNN pipeline is implemented. The first stage of the DNN pipeline
uses Yolov3/Refinet for car/pedestrian detection, respectively, and the second
stage of the pipeline uses Resnet-50 as a backbone network for car/pedestrian
classification.

5.3 Results and analysis

As shown in Fig 6, we have tested our framework for two different video ana-
lytic applications: car and pedestrian Re-Identification. The proposed framework
shows the capability to handle the videos and identify objects correctly through
tests in both scenarios.

Fig. 6. Testing scenarios. (a) Car re-identification; (b) Pedestrian re-identification

In our experiment, we use the same video processing pipeline to handle dif-
ferent video input streams, and continuously monitoring system’s performance
metrics, such as frame rate (FPS), energy consumption and DPU latency, via
the proposed customised communication interference plugin. In the proposed
work, we measure real-time on-board power from ZCU104 registers when using
different sizes of DNN models. The total energy consumption can be calculated
using the following equation:

E:ZPi/f (1)



where E denotes the total energy consumption in Joules (J), P denotes power
consumption in Watt (W) at time 4, f denotes sampling frequency in Hz. From
Fig 7, the total energy consumption is reduced by 18.9%, 38.4% and 53.8% in
the car scenarios respectively, and similarly reduced by 25.4%, 41.1% and 61.6%
respectively in the pedestrian scenarios.
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Fig. 7. Total energy consumption for running different models

In general, smaller size DNN models achieve better DPU inference latency
due to less operations required, as the result of this, the entire video pipeline
will finish quicker than deploying a larger model. Therefore, we can implement
a dynamic model-switch strategy to select a suitable DNN model based on the
real-time performance metrics to improve performance of the entire system. By
comparing the original model, the proposed system can reduce the latency of
DPUs for the whole video pipeline by 12.9%, 23.9%, and 36.5%, 14.0%, 25.9%,
and 38.6% in car and pedestrian scenarios respectively.

The detailed DPU inference latencies for each OFA network model are sum-
marised in Fig 8.

Fig 9. (a) and (c) show FPS results of OFA700, OFA1000, OFA2000 and
Resnet-50 on the car and pedestrian scenarios respectively. By comparing the
FPS of Resnet-50, the overall FPS is increased by 26.3%, 65.6% and 113.0% in
car scenarios by using OFA700, OFA1000, and OFA2000 models respectively;
Similarly, it is also increased 27.1%, 65.7% and 132.1% FPS in pedestrian sce-
narios respectively.

In certain running environments (e.g. simple scenarios but with varying
amounts of objects), we can dynamically switch the DNN models by monitoring
the run-time performance metrics. Thus it could further increase overall power
and computing efficiency with an acceptable loss of classification accuracy (Table
3). For example, as shown in Fig 9 (b) and (d), by switching the DNN model to
a smaller one at run-time, the average frame rates are increased from 17.04 FPS
to 29.4 FPS in the car scenarios and from 16.9 FPS to 30.8 FPS in the pedes-
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trian scenarios respectively. Meanwhile the energy consumption is also dropped
by 34.2% and 34.0% respectively for the two scenarios (see Fig 7).

6 Time and power consumption

In this sections, we will discuss and elaborate consumption (e.g. Time and power)
for the proposed framework.

6.1 Impact factors

Data volume: In section 5, each detected object will be cropped and sent to the
second stage of the pipeline (e.g. Resnet-50 or OFA-Resnet-50 networks) for the
classification work. The workloads will be significantly varied in the second stage
of the pipeline with the number of objects were detected in the first stage. Size
of models: Additional time consumption is majorly needed for rewriting the
bitstream and updating software drivers, and the time for rewriting bitstream is
varied by the sizes of the reconfiguration stream. On the other hand, the extra
power consumption maybe caused by rewriting the RAMs. Scale/size of a model
may influence time consumption of a single object classification job as well.

6.2 Benchmark

In order to analysis these factors, we create 7 different scene videos contain
different number of cars, and test them for 2 different modes. The first mode is
normal display mode, in which it just displays videos using VVAS. In the second
mode, there are some model switch behaviors added with same time interval.
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Fig. 9. FPS of the proposed system in different scenarios. (a) Car scenarios without
model switch. (b) Car scenarios with model switch. (c) Pedestrian scenarios without
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We record both time and energy consumption and attempt to analyse how these
factors influence the system performance.

Time consumption: We can calculate a single switch time cost by compar-
ing the time consumption between two modes, and through multi-set of data, we
find that time cost of model switching behavior is irrelevant to the sizes of the
models. It is varied between 30 ms to 300 ms. It may because the bandwidth of
DDR is large enough for small data exchanges in the benchmark. From Fig.10, it
is easily to conclude that the cost in a full process will increase if either the sizes
of the models or the target number increases, and there is a linear relationship
between data volume and total time consumption, which is a factor of 12 ms
per object for using OFA700 model. Models with larger size (e.g. OFA1000 and
OFA2000) will spend 64.4 % and 112.5 % more time respectively compared to
OFA700 model.

Power consumption: As shown in Fig.11, the energy consumption will be
increased by 24.6 %, 111.8 %, 289.0 %, 636.2 % and 1345.4 % for detecting 2, 4,
8, 16, 32 objects respectively when comparing to only 1 object is detected. With
the same object number, the energy consumption will be increased by 3 % and
9 % for OFA1000 and OFA2000 respectively when comparing to OFA700.

7 Conclusion

In this work, we proposed designing a new flexible hardware accelerator frame-
work to enable adaptive support for various DNN algorithms on a FPGA-based
edge computing platform. The achieved results show that with the proposed
framework is capable to reduce energy consumption and processing time up to
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53.8% and 36.5% respectively by switching to a smaller model. While using
a dynamical model-switch strategy, the frame rates are increased immediately
at the switching point. The average frame rates are increased from 17.04 FPS
to 29.4 FPS in the car scenarios and from 16.9 FPS to 30.8 FPS in the pedes-
trian scenarios, respectively. Two major impact factors, data volumes and size of
model, have been further discussed with a designed benchmark and the statisti-
cal data shows that both factors have the positive impact on the energy and time
consumption of the framework. By further combining a dynamic-reconfiguration
strategy in hardware modules, the proposed system could offer an unprecedented
opportunity to create new adaptable architectures and algorithm models using
the hybrid-computing units and resources. It is anticipated that it will greatly
impact increasing energy efficiency, performance, and flexibility.
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