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Abstract—In the Internet of Things (IoT) era, deep learning
is emerging as a promising approach for extracting information
from IoT devices. Deep learning is also employed in the edge
computing environment based on the demand for faster process-
ing. In the edge server, various hardware accelerators have been
proposed in recent studies to speed up the execution of such
DNNs. One such accelerator is Xilinx’s Deep Learning Processor
Unit (DPU), designed for FPGA-based systems. However, the
limited resource capacity of FPGAs in these edge servers imposes
an enormous challenge for such implementation. Recent research
has shown a clear trade-off between the “resources consumed” vs.
the “performance achieved”. Taking a cue from these findings, we
address the problem of efficient implementation of deep learning
into the edge computing environment in this paper. The edge
server employs FPGAs for executing the deep learning model.
Each deep learning network is equipped with multiple distinct
implementations represented by different service levels based
on resource usage (where a higher service level implies higher
performance with high resource consumption). To this end, we
propose an Integer Linear Programming based optimal solution
strategy for selecting a service level to maximize the overall
performance subject to a given resource bound. Proof-of-concept
case study with a deep learning network of multiple service levels
of DPUs on a physical FPGA has also been provided.

I. INTRODUCTION

Deep learning has recently emerged as a canonical method-
ology in a variety of domains, including computer vision,
bioinformatics, natural language processing, and robotics, to
mention a few [1]. The reason behind its success can be
attributed to its ability to learn from huge volume of data.
Another field which is known for generating huge amount
of data is Internet of Things (IoT). Recently, Tiny machine
learning (TinyML) is also emerging as a new Internet of
Things (IoT) prospect that calls for putting the ML algorithm
within the IoT device, thanks to rapid advancements in the
shrinking of low-power embedded devices and improvements
in the optimization of machine learning (ML) algorithms [2].

Many recent research works have considered using deep
learning networks to process the IoT data [3]. As a promising
result, deep learning has successfully predicted home electric-
ity consumption based on the data from smart meters [4]. Deep
learning has also been used to provide location aware services
in indoor environments and marketing in retailers [5].
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Modern IoT systems demand fast processing, where data
needs to be processed in smaller scale platforms rather than
execution of complex process of data transfer to a cloud
server for analysis. Hence, it will be worth mentioning that
the use of centralized cloud for computation of deep neural
network will generate bottleneck due to transfer of large set of
data with limited network performance [6]. In such scenario,
edge computing [7]–[9], a prolific technology for IoT services,
emerges as a promising solution. Edge computation offloads
the computing tasks from centralized cloud to the edge server
located near the IoT devices. Moreover, edge computing is
well suited for the applications like deep learning as its
intermediate data size is smaller than the input data size. Self
driving car is another emerging example of employing deep
learning on edge environment [10].

Hardware makers are exploiting existing hardware, such as
CPUs and GPUs, as well as developing bespoke application-
specific integrated circuits (ASICs) for deep learning, such
as Google’s tensor processing unit (TPU) to speed up deep
learning inference [11]. Deep Neural Network accelerators
based on field-programmable gate arrays (FPGA) are another
promising method, as FPGA can enable fast computing while
keeping reconfigurability [11]. The deep learning processing
unit (DPU) is developed as a general accelerator on an FPGA
to handle multiple CNN layers, such as convolution, pooling,
and activation, and to meet various CNN architectures [12].

Recent research works [13], [14] have assumed that the
edge server has sufficient hardware resources (FPGAs or
cpus) in terms of computation capacity (memory size) to
successfully extract intermediary features using deep learning
layers. However, this assumptions will not be true in many
cases. In case of resource constrained edge computing en-
vironment [15], it has also been observed that there exists
scenarios where completion of tasks is more critical than
achieving the higher performance [3], [15]. Hence, in order to
carry out successful execution of deep learning in a resource
constrained FPGA-based edge computing framework, we con-
sider each deep learning network, to be equipped with multiple
distinct implementations represented by “service levels”. Each
implementation of the learning network produces the same
result of prediction or classification, but with different levels
of performance (in terms of GOPs). Higher service level
will return higher performance however, it can typically be
achieved at the expense of more resource (i.e. DPU size



cosuming more FPGA resources like LUTs, BRAMS, etc.).
The idea of of having different service levels for deep

learning network is supported by the research findings reported
in [16]. In this research, the authors have found out that out
of all, the memory requirement weight parameters contribute
most to the memory footprint. The research further proves that
a reduced precision in representing 20% weight parameters
results in 1% performance loss. Taking cue from these find-
ings, we propose a strategy for deploying deep learning for
IoT into the edge computing environment. Depending upon
availability of resource budget each deep learning network on
an edge server is executed at a particular service level.

In this paper, we develop the algorithmic support for
efficient implementation of deep learning into the FPGA-
based edge computing environment, where multiple versions
of DPUs are used for executing the neural networks. Specifi-
cally, we answer the following question: Given a upper-bound
on available resources in an edge computing environment
(maximum area/resource capacity of the FPGA), how do we
ensure that the DPUs will efficiently execute deep learning
network in a specific service level, while maximizing the
overall performance (GOPs) of the process.

The contributions of this work are summarized as follows:
• Introduction of framework for deploying deep learning in

FPGA-based edge computing framework of IoT systems
with multiple service levels.

• Development of Integer Linear Programming (ILP) based
technique to obtain optimal selection of service level for
deep learning network.

• Evaluation of the proposed ILP based strategy with
simulation experiments.

• Exhibition of the proof-of-concept by a case study which
implements image classification applications on DPUs
with multiple service levels with various area require-
ments.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In the proposed system model, Deep Learning Processor
Unit (DPU) from AMD-XILINX FPGA have been employed
to speed up the execution of Convolutional Neural Networks
(CNNs). In [17], [18], the authors have showed that although
each CNN can only consume one DPU, many DPUs can be
constructed together on an FPGA to enable concurrent CNN
operation. Each DPU has its own requirements of computing
resources and BRAMs.

Without loss of generality, we assumed an FPGA-based
edge computing environment where the edge server is
equipped with FPGAs, where each FPGA may contain mul-
tiple DPUs. In the given edge computing environment, let us
assume that D denotes the set of N DPUs available in an
FPGA: D = {D1, D2, ...., DN}.

It has been assumed that based on the degree of FPGA
resources allocated, each DPU will be equipped to execute the
deep learning network for testing in different service levels
based on the available resources. An DPU, at any instant,
will execute the deep learning model in any one service level

among the possible q service levels i.e., li = {l1i , l2i , . . . , l
q
i }.

Hence, jth service level of Di can be denoted as lji . The
service of a level is proportional to its level-ID. Thus, 1 is
the lowest and q denotes the highest execution level.

It can be concluded that higher be the service levels, higher
will be its resource consumption. This resource consumption
could be in terms of energy consumption, memory consump-
tion of the FPGA. On the other hand, execution of the network
in high service level will result in more enhancement of
the performance level of the testing process. Service levels
with varying degrees of performance Vs. resource trade-
offs can be obtained by controlling the degree of resources
incorporated in the DPU [18]. This concept has also been
validated in Section V. This work assumes that, higher be
the service level of Dj

i , higher is its resource consumption
Resji (lji > lj

′

i =⇒ Resji > Resj
′

i ). Resji denotes the
resource consumed by Di while it executes the deep learning
network in jth service level. Similarly, we have also assumed
that performance perji will be assigned to Dj

i if the ith edge-
server (Ei) successfully executes the deep learning network in
jth service level by fulfilling the resource demand.

We have assumed an resource constrained edge computing
environment as stated in [15]. Thus, we are imposing the
following constraints i.e. i. The overall resource budget R⃗total

is fixed for the FPGA. The detailed calculation of is provided
in Section V. ii. Having the given R⃗total, each DPU has to
finish the execution of deep learning network by selecting a
service level.

Problem Description: Given N DPUs equipped to execute
deep learning network in q service levels, determine a service
level for each DPU such that the overall testing performance is
maximised, while satisfying the given constraints. The pictorial
description of the problem is given in Figure 1.

Fig. 1. The proposed framework.

III. ILP BASED LEVEL SELECTION STRATEGY

In this section, we present an Integer Linear Programming
(ILP) solution to our proposed problem. For this purpose,
we define a binary decision variables: i. Z = {Zj

i : i =
1, 2, ..., N ; j = 1, 2, ..., q. Here, indices i and j respectively
denote DPU ID and corresponding selected service level ID.
Zj
i = 1, if DPU Di executes in jth service level and obtains

Perji performance value. Zj
i = 0, otherwise.

We now present the required constraints on the decision
variable to model this problem before presenting its overall
objective function.



TABLE I
RESOURCE AND PERFORMANCE VALUES FOR EACH DPU

D1 D2 D3

Service
level

Required
resource

Obtained
performance

Service
level

Required
resource

Obtained
performance

Service
level

Required
resource

Obtained
performance

1 2 12 1 6 2 1 7 4
2 5 13 2 14 9 2 10 6
3 7 16 3 18 16 3 13 8

TABLE II
OUTCOME: ILP

DPUs Selected level Obtained performance
D1 3 16
D2 3 16
D3 2 6

Total obtained performance 38

1) Resource Constraint: The deep learning network has to
be executed on FPGA within the total available resources
in FPGAs, R⃗total. This essentially means that the sum-
mation of consumed resource by each DPU should not
exceed the given budget for the entire FPGA. This
constraint is imposed through the following equation.

N∑
i=1

q∑
j=1

Resji × Zj
i ≤ R⃗total (1)

2) Service level Uniqueness Constraint: Each DPU will
only be allowed to execute the deep learning network in
at most one service level. That is,

q∑
j=1

Zj
i ≤ 1,∀i ∈ [1, N ], Zj

i ∈ {0, 1} (2)

3) Objective: The objective of the formulation is to choose
that feasible solution which maximizes the overall per-
formance of the prediction / testing process through
appropriate choice of service levels. Hence, the objective
can be written as follows:

Maximize

N∑
i=1

q∑
j=1

Perji × Zj
i (3)

A. Example: Proposed strategies at work

In this section, we have illustrated the working mechanism
of the proposed strategy through an example for ease of
understanding. Let us assume, there exists three DPUs, i,e.,
D1, D2 and D3 in an FPGA, resource demand (Resji ) and
corresponding performance Perji value for each service level
is provided in Table I. We have also assumed that the available
overall resource budget (RES BGT ) is 35. The total obtained
result is shown in Table II. We have solved the ILP based
technique for the same input values, provided in Table I
through CPLEX solver [19] and the obtained outcome is
presented in Table II.

IV. SIMULATION & RESULTS

The performance of the proposed strategy has been eval-
uated using simulation based experiments. In this current
experimental scenario, We have considered that the FPGA
is capable of executing deep learning network in 3 distinct
service levels and FPGA consists of 3 DPUs , as shown in [17].
The area consumption and corresponding performance values
have been taken from [20].

A. Results

Experiments have been conducted to evaluate the perfor-
mance of the proposed strategy i.e., ILP based technique.
The performance metrics which have been considered for the
evaluation are:

1) Average service level allocated to each DPU
2) Normalized Obtained Throughput (NOT ), NOT is

defined as the ratio between the ultimately achieved
performance value for the DPU and the maximum
possible achievable throughput by executing the network
at their highest service level. Mathematically, NOT can
be formulated as:

NOT =

∑N
i=1(

per
j
i

per
q
i
)

N
× 100% (4)

ConsumptionArea

Fig. 2. Average allocated level Vs RES BGT

Figure 2 shows the plots for the average levels allocated to
each DPU by ILP based technique. As the overall resource
budget (RES BGT ) varies. Here, we have normalized the
total FPGA area and represented it in a scale of (0-100). It may
be observed from this figure that the average level allocated
to each DPU increases with the increasing available overall
resource budget.

Figure 3 depicts the plot for NOT achieved by the strategy.
It may be observed from the figure that the aggregate NOT
obtained by the strategy increase with increasing available



Fig. 3. NOA Vs RES BGT

RES BGT . This is because the NOT value obtained by the
strategy is proportional to the allocated levels to the DPU and
therefore, average levels allocated to all edge servers increase
with available resource budget (as shown in Figure 2).

V. EXPERIMENT FOR PROOF OF CONCEPT

In this section, we provided a proof-of-concept that each
DPU in the FPGA can be configured with different service
levels by varying the resource utiliation. To this end, we im-
plement a deep learning-based image classification application
on an AMD-Xilinx ZCU102 development platform (e.g. Zynq
UltraScale+ XCZU9EG-2FFVB1156 MPSoC). This platform
has been configured with a Petalinux-based operating system
on an MPSoC, and it is configured with 3 separated DPUs
within the programmable logic fabric. The Xilinx DPU is a
configurable computation engine dedicated to convolutional
neural networks. The degree of parallelism utilized in the
engine is a design parameter and application. It includes
highly optimized instructions and supports most convolutional
neural networks, such as VGG, ResNet, GoogleNet, YOLO,
SSD, MobileNet, FPN, and others. Each DPU is configured
into different architectures with different hardware resource-
allocation strategies so that the different architectures represent
different “service levels,” as stated in Section II.

To set up the onboard system, we have built the image
file using an AMD-Xilinx Vitis 2022.1. Since AMD-Xilinx
has already provided some standard developed packages, we
re-designed the image file by exporting the packages and
running the TCL scripts in Vitis. Two packages are used in the
image file production, a MPSOC standard image system, and
a ZCU102 base platform. The MPSoC standard image system
package contains a prebuilt Linux kernel and root file system
that can be used with any Zynq, ZynqMP, or Versal board for
embedded Vitis platform developers.

In our experiments, a series of DPUs with different config-
urations are used as different service levels, listed in Table IV.
The name of the architecture represents the peak performance
of the DPU. For instance, B512 means the DPU can conduct
up to 512 operations in one clock. To implement those service
levels, we experimented with various parallelism techniques
inside a DPU.

There are three dimensions of parallelism in the DPU
convolution architecture - pixel parallelism (PP), input chan-
nel parallelism (ICP), and output channel parallelism (OCP).

Figure.4 explains the meaning of each three dimensions, and
pixel parallelism is 2, input channel parallelism and output
channel parallelism both equal to 3 respectively in this figure.
The input channel parallelism is always equal to the output
channel parallelism. The different architectures require dif-
ferent programmable logic resources. The larger architectures
can achieve higher performance with more resources. The
parallelism for the different architectures is listed in Table III.

TABLE III
DPU CONFIGURATIONS

DPU
architecture PP ICP OCP Peak

operations
B512 4 8 8 512
B800 4 10 10 800

B1024 8 8 8 1024
B1152 4 12 12 1152
B1600 8 10 10 1600
B2304 8 12 12 2304
B3136 8 14 14 3136
B4096 8 16 16 4096

The experiment flow is described in Figure 5. An image
classification application is running on the board, and the ap-
plication is executed, split into several separated tasks through
the OS on Cortex A53, and sent to different configured DPUs.

We use a Resnet-50 network to classify the image stream
file with multi-thread (8). With the API interference provided
by AMD-Xilinx, we deployed the neural networks in the
application.

The proposed framework can also be extended to other clas-
sificication neural networks, and different model parameters
would lead to a different stragety for resource allocation. Usu-
ally models with more parameters will have better accuracy
(like Resnet50/Resnet25).

The program also measured the power consumption, the
accuracy of the classification tasks, and the total execution
time.

Three types of resources are required i.e., LUTs, BRAMs,
and DSPs on the different architectures of DPUs, and the
resource consumption has been described in Table IV.

There are 8 different architectures (levels) deployed on
the DPUs on board, and each setting means a single DPU
structure, which has different sizes of LUTs, BRAMs, and
DSPs. We use these three parameters to describe the resource
required with a 3-dimension vector (LUT, BRAM, DSP). Each
element in the vector means the usage of the LUT or BRAM,
or DSP on the DPU.

TABLE IV
PARAMETERS FOR EACH DPU

DPU
Architecture LUT BRAM DSP

B512 27893 73.5 78
B800 30468 91.5 117
B1024 34471 105.5 154
B1152 33238 123 164
B1600 38716 127.5 232
B2304 42842 167 326
B3136 47667 210 436
B4096 53540 257 562

However, LUTs, BRAM and DSPs are using different units.
To bring the notion of “RES”(resource) as stated in earlier
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section, the numbers of LUTs, BRAM and DSPs have been
normalized. Rl (No. of LUTs), Rr (No. of BRAMS) and Rd(
No. of DSPs) are normalized by the total available resources in
FPGAs, R⃗total. For example, Rl can be represented as follows:

Rl = 100× Rl

MaxRl

where MaxRl represents maximum available LUTs. The
results have been scaled by a factor of 100 to simplify the
calculation. In section II, Res is used as an unified parameter
to represent required resources. Here we use the norm of
R⃗total to calculate Res:

Res = ||R⃗total|| = ||{Rl, Rr, Rd}||

The resource consumption for different DPU architectures is
shown in Table V. These results align with our idea proposed
in Section 2 and depict that the expense of higher resource
consumption can achieve higher service levels. Now, we will
look at how these different service levels represent the notion
of performance variations.

TABLE V
NORMALIZED REQUIRED RESOURCES OF DIFFERENT DPU

ARCHITECTURES

DPU
Architecture Rl Rr Rd Res

B512 10.18 8.06 3.10 13.35
B800 11.12 10.03 4.64 15.68

B1024 12.58 11.57 6.11 18.15
B1152 12.13 13.49 6.51 19.27
B1600 14.13 13.98 9.21 21.91
B2304 15.64 18.31 12.94 27.34
B3136 17.39 23.03 17.30 33.65
B4096 19.53 28.18 22.30 40.90

For the performance evaluation, we evaluated it with esti-
mated performance and onboard performance. The estimated
performance is defined by the peak operations of different
DPU architectures, and a higher peak operation refers that the
higher data throughput will be handled per clock cycle. We use
the average processing time t in a single task for the onboard
performance to evaluate the efficiency of the DPUs. We choose
1/t to describe the onboard performance. The higher the value
is, the better the performance is. The on-board and estimated
performance are shown in Fig. 6.

Table V and Fig 6, validate the proposed concept in Section
2 via a real-life case study in physical FPGA. By using
different settings of the DPUs, we can obtain a combination of
different configurations for hardware resource allocations and
the corresponding performance parameters. We can conclude
that choosing the DPU at a high service level will enhance
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the performance level. Hence, the Service levels with varying
degrees of performance Vs. Resource trade-offs are obtained
by controlling the degree of resources incorporated in a DPU.

VI. CONCLUSION

In this work, a new concept of efficient implementation
of deep learning with multiple service levels for IoT into
the FPGA-based edge computing environment has been intro-
duced. The problem has been formulated as an optimization
problem where each DPU can execute the network with
different service levels by exhibiting performance Vs. Re-
source trade-offs. An ILP-based strategy to maximize overall
performance without violating the resource constraint has been
proposed. Experimental analysis reveals the practical efficacy
of our scheme. The proposed scheme can achieve 80% of
throughput. Finally, a case study that implements deep learning
network with multiple service levels on DPUs (on an FPGA)
has been presented. The higher the resource consumption of a
DPU architecture, the higher the performance will be. Thus,
the obtained trend from these experiments proves that the
proposed concept is valid in a real scenario on physical FPGA.

When deploying models in practical situation, resource
limitation may be dominated the application requirements.
Therefore, this strategy can be used as a bridge to minimise
the variance by using different sizes of models, and to achieve
the best performance in terms of accuracy, speed and power
consumption for the application needs at run-time.

In the future, we will propose a heuristic-based strategy,
and an end-to-end hardware (FPGA) validation of the software
outcomes will be presented.
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