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Abstract—The assessment and treatment of diseases that causes
movement impairments typically rely upon clinical information
obtained from self-reported rating scales and clinical observation
from health professionals. Currently, objective clinical gait anal-
ysis requires the use of expensive cameras or wearable sensors,
which may be too time-consuming for routine clinical usage.
Therefore, an assessment system that can provide non-invasive
gait analysis tool is desired. In this paper, we propose a cost-
efficient assessment system that combines computer vision and
artificial intelligence technology to analyse human gait, which
can provide a basic clinical report for clinicians to evaluate the
patients’ recovery to facilitate clinical decision making. And a
series of experiments is taken to improve this assessment system
performance. Those experiments showed that when the visibility
threshold (VT) is set to a relatively high level (VT = 0.4), the post-
processing part, which includes a Kalman filter and a frequency
domain filter, can improve the human pose detection model
(BlazePose)’s joint angle prediction accuracy by 10%. This post-
processing method can be applied to other human body detection
models to achieve filtering and feature extraction from joint angle
signals for clinical gait analysis.

Index Terms—Gait analysis, Mediapipe, Assessment system.

I. INTRODUCTION

Common to almost all neuromotor (e.g. stroke, Parkinson’s
disease) and lower limb diseases (e.g. arthritis) may cause
degradation of motor control, which negatively impacts their
life quality. According to Statistics from Global Burden of
Disease Collaborators, in 2016, over 80 million people world-
wide suffered a stroke, of which 5.5 million died as a result
of a stroke [1]. And the disability rate of such disease may be
as high as 75% [2]. Parkinson’s disease affects an estimated
6.2 million people worldwide in 2015 and caused 117,000
deaths [3], while most Parkinson’s victims suffer persistent
symptoms of the disease, such as tremors, stiffness, slowness
of movement and instability. In the United States, about 43
million individuals (1 in 6) have arthritis, which leads to
an urgent need for advanced medical technology to cope
with the increasing demand for arthritis-related hospitalization
and treatment with rehabilitation [4]. Given that walking is
fundamental to activities of daily living and exercise, the
rehabilitation of this motor task is key to improving the quality
of life and health of patients.

Disease recovery for these patients can be difficult and nor-
mally it has a long recovery process. Effective communication
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to assess the disease and customize personalized rehabilitation
planning, combined with monitoring and feedback among
clinicians, patients and their families, is the key to achieve
a successful rehabilitation. To help healthcare professionals
make timely recommendations, a home health assessment
system using markerless gait detector is introduced in this
paper, and it will focus on abnormal gait analysis, which is
one of the significant pathological features of these diseases.

In order to reduce the noise of predicting biomechanical
signals introduced by markerless gait detector, Kalman Filter
(KF) and Discrete Fourier Transform (DFT) algorithms have
been introduced to cope with the loss of target of the human
pose detection model, and the extreme values of joint angle
signal are smoothed [5], [6]. In addition to reducing noise
in the biomechanical signals, the most important function of
the evaluation system is to extract features from joint angle
signals and use the extracted features to establish a normative
sample model, which can be used to quantify the magnitude
of movement impairment in patients. Furthermore, Principal
Component Analysis (PCA) algorithm is used to achieve this
requirement [7]. To evaluate the patients’ health condition,
the deviation for identifying normal gait and morbid gait
is defined using Mahalanobis distance, which describes the
distance between the target sample and the group sample [8].
These algorithms construct a special post-processing method
for the proposed clinical gait analysis system.

This paper aims to design a rehabilitation assessment system
for aiding clinicians in clinical-decision making, which pro-
vides an exploration of using human pose detection models
in the clinical gait analysis field. In addition, a reusable post-
processing algorithm and strategy for clinical gait analysis are
also proposed. Moreover, to improve the joint angle signal ac-
curacy and the assessment system performance, a series of ex-
periments are performed to identify suitable hyper-parameter
settings. Although the proposed assessment system is currently
inadequate for a fully independent gait analysis and assessment
that is completely free from professional involvement, the
system can effectively assist healthcare professionals to learn
patients’ condition from a basic gait analysis without requiring
special locations or time arrangements.

The rest of the paper is organized as follows. The overview
of the assessment system is introduced in Section II. Section
IIT illustrates the system architecture and discusses imple-
mentation details of the assessment system. The experimental



results and evaluation are provided in Section IV. In the last
section, the conclusions are discussed.

II. SYSTEM DESIGN

The assessment system focuses on tackling the following
four challenges. Firstly, detection of joints’ locations. Sec-
ondly, prediction of walking speed. Thirdly, de-noise of raw
joint angle signals. Finally, create feature model to assess
patients’ disease conditions. In this section, the proposed
solutions for the above challenges are discussed respectively.

A. Pose Detection

The joint angle is one of the important kinematic parameters
in human gait analysis [9]. In this paper, BlazePose is applied
to predict key points of the human body, and the lower
limb joint angle-time series signals were obtained by further
processing those key points [10].

To reduce the background environment noise level intro-
duced in joint prediction, the pose segmentation mask will
be applied in the pre-processing stage. Fig. 1(b) illustrates the
anatomical joint landmarks [11] used by BlazePose for human
pose prediction and segmentation masking for a video frame
in a public dataset [12]).

(a) Skeleton

(b) Mask

Fig. 1. The key point landmark and joints prediction [12].

B. Pose Classification

The walking speed is one of important parameters for hu-
man gait analysis. The stride cycle can be roughly divided into
two-step: left foot in the front (Posture A), and right foot in
the front (Posture B). Thus, the counting strides task becomes
the pose classification task. Since each state has a unique
body posture, and those postures are described by a data
structure called Pose Distance Embedding (PDE) containing a
list of joint distances (signed value), the Mediapipe provides
a solution to count the number of repeated movements that
uses the K Nearest Neighbor (KNN) algorithm [11], [13] to
identify the one state of the repeat action. Once the algorithm
finds that the target is in the corresponding posture, the counter
then updates.

To solve the problem that counter increases unexpectedly
for the same posture in continuous video frames, exponential
moving average (EMA) smoothing algorithm [11], [14] and
two thresholds were applied respectively. The EMA algorithm
can firstly reduce the undesired identification error, then entry
threshold 7% and exit threshold 75 (e.g. 71 > T5) were set

to avoid the cases when probability fluctuates around the
threshold caused phantom counts.

(a) Posture A (’left”)

(b) Posture B ('right’)

Fig. 2. Pose classification.

Fig. 2(a) and Fig. 2(b) shows two types of postures defined
in this paper. The blue curves in Fig. 2(a), and Fig. 2(b) are the
posture confidence before smoothing, and the orange curves
in Fig. 2(a), and Fig. 2(b) are the posture confidence after
smoothing. The walking speed can be then calculated from
the number of strides divided by the frame interval of two
strides and updated thereafter.

C. Post-processing

The raw joint signals predicted by BlazePose usually suffer
from the pose detection failures and other noises caused by
the extreme values. In this part, two post-processing algorithms
were introduced to solve those issues.

1) Kalman Filter: Due to the errors of the prediction model
as well as other overlapped body parts, it is inevitable to avoid
detection failure while the target is moving. Most of the time,
the target loss only occurs in a very short period. Therefore,
a Kalman Filter (KF) can be designed to correct the targeted
state from the prediction [15].

Since most of the time the changes of joint angle have
steady velocity and acceleration, the joint angle time series
signals can be thus considered as a simple linear model [15].
A KF can then automatically adjust parameters (error estimate
covariance matrix P and Kalman gain K) to handle the in-
fluence of velocity and acceleration changes on the prediction
results by combining the current measurement results.
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The above classical kinematic model equation derived from
the Maclaurin series can be used to describe the changes in
joint angles over time [5], where 6, represents the joint angle
at time point t. At, is the reciprocal of frame per second
(FPS), also known as the interval period of two consecutive
frames. v is joint rotate speed, a is the angular acceleration,



and R is called remainder which is ignored because this value
is extremely small with the growth of n. This kinematic model
equation can be transformed into a matrix equation in KF.
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The matrix equation (5) describes the calculation of (1), (2)
and (3), which is the prediction step in KF [15]. The matrix A
is a state-transition matrix, and Pnoise; in (5) is a processing
noise obeying the Gaussian distribution Pnoise; ~ (0,Q),
where () is a process noise covariance matrix. The equation
(6) extracts useful state information (joint angle #), where
the matrix S; is a joint state at time point ¢, the matrix H
is a measurement matrix, and the Mnoise; is measurement
noise obeying the Gaussian distribution Mnoise ~ (0, R),
where R is measurement noise covariance matrix [16]. The
above equations (5, 6, 7) only demonstrate the situation of
one joint angle, in this paper, those matrices will contain four
joint states (left knee, right knee, left hip, right hip), each of
them has three parameters: joint angle 6, rotate speed v, and
rotate acceleration. Thus, the state matrix is a (12, 1) matrix.

In addition to the kinematic model definition, the KF also
requires initializing some basic matrix parameters. The process
noise covariance matrix (), the measurement noise covariance
matrix R, and the error estimate covariance matrix P at ¢t = 0,
called Py [16]. Those matrix parameters need to be carefully
adjusted in advance. In this paper, they are set as follows.
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The error estimate covariance matrix P; is automatically
adjusted per iteration. The matrix () and matrix R reflect the
confidence for the measured and predicted results respectively.
To be more specific, a higher o or 5 means less confidence
in the observations or predictions. By modifying coefficients
« and § to adjust the performance of the KF to achieve a
relatively ideal effect. The detail about o and S is discussed
in section IV-B.

2) Frequency Domain Filter: Although the KF algorithm
can solve joint angle loss when joint visibility is below the
threshold, it has a limited effect on removing extreme values
and waveform distortion. Thus, the time-series signal needs

an extra filter to de-noise and smooth the signals. Usually, the
extreme values and waveform distortion are caused by noise
with relatively low energy in the energy density spectrum.
To de-noise the joint angle signal, a frequency domain filter
implemented by Discrete Fourier Transform (DFT) and Inverse
Discrete Fourier Transform (IDFT) is applied in the post-
processing part.

The DFT algorithm can compute the amplitude and phase of
each frequency component. According to Parseval’s theorem,
the energy density of corresponding frequency components is
| Amplitude|® /N, where N is the sampling number of the
signal. For the assessment system, the sampling number is the
number of frames for input video. Except for the amplitude
of each frequency component, the phase difference of the
principal frequency component in the frequency domain of
two legs is one of the features that can be used in future
analysis.

Morgan K D and Noehren B [6], come up with a filter
strategy that select out the frequency components with top K
energy density to recover the corresponding time-domain sig-
nal. For easy to mark, we call it the Peak Top K Components
strategy (PTKC). This method performs well for wearable
sensor situations. Inspired by this method, the strategy to
pick those frequency components that can recover a time-
domain signal with the lowest Root Mean Square (RMS)
error is proposed. For easy to mark, we call it the Lowest
Root Means Square Error strategy (LRMSE). This strategy
(LRMSE) is built on the assumption that the joint angle time
series signals from BlazePose are close to the ground truth,
otherwise, this strategy will make the recovered signal worse.
The comparison between the experimental results for the two
strategies is illustrated in Section I'V-B.

D. Feature Model

The final object of this work is to build a system to
assess the patients’ disease condition. To achieve this goal,
the Principal Components Analysis (PCA) is used to create a
model to obtain a group of sample features [17].
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Equations (10-15) illustrate how the PCA can be used to
generate a feature model. Suppose d; is the original dimension
size, do is the size of the reduced dimensions, and n is the
number of samples. In addition to dimension reduction, eigen-
vectors (loading matrix is constructed by eigenvectors) and



eigenvalues generated by PCA can be used to build a feature
model. The eigenvalues indicate which axis (eigenvectors) are
important at the new scale.

The value located on (4,7) in the covariance matrix Cov
shows the internal relationship between the ¢ — th scale (e.g.
height) and j — th scale (e.g. age). If this value is positive,
then those two scales have a positive correlation. If this value
is negative, then those have a negative correlation. The loading
matrix is a matrix combining a list of eigenvectors, the ¢ — th
eigenvector is sorted out according to its score, where the
score is A;/sum(EigenValue) (the i — th eigenvalue is
the variances of the ¢ — th eigenvector) [8], [17]. In this
paper, the PCA will create a feature model with reduced
dimensions that can explain 90% of samples’ variance, which
require a loading matrix to select out a set of eigenvectors
(also be known as principal components, PCs) who satisfies
Z?Q Ai/sum(EigenValue) > 90%. The Reduction matrix
is the final feature model for n samples with reduced dimen-
sions.

III. SYSTEM DESIGN

In this sections, the details about how the system processes
video input and generates reports will be discussed.

Joint angle signals
Rendered video

Analyse video

PCs scatterplot

ainjeay 23e213x3

Upload video Filtered signal plots

Fig. 3. System work flow.

Fig. 3 summarises the system working flow. The process of
the assessment system can be mainly divided into three steps:
1) Gather data; 2) Build a feature model; 3) Analyse the target.

In the first step, the users need to provide a video input that
meet the system requirements (e.g. horizontal and stabilized
view, around 30 FPS, only one target in the camera, suitable
resolution and a clear silhouette of the human body), then
the BlazePose will return a 33 predicted joint locations and
corresponding visibility scores. In this paper, the hip and
knee angles are the main characteristics that the assessment
system focuses on, while other joints are adopted to help
pose classification function design in stride counter module.
The joint angles in each frame are combined into a discrete-
time domain sequence [0y, 61, - ,0:] as the raw joint angle
signal, where the joint angles are computed by using the

cosine law cos(f) = ‘g"‘%'. Then KF algorithm will replace

loss value in the raw joint angle signals. After that, the no-
loss signals will be transformed into the frequency domain
by using the DFT algorithm. A strategy called Least Root
Mean Square Error (LRMSE) is adopted as the filter strategy
to select principal frequency components, and then the system
temporarily saves the recovered signal for rendering video and
following processing.

In the second step, the samples were divided into different
groups according to their age and gender, given that female and
male participants have different lower limb skeleton structures
and the gait parameters are sensitive to the physiological age
[18]. Then a set of uniform gait parameters were gathered
from samples: age, gender, height (cm), weight (kg), hip phase
different, knee phase different, left knee max angle, left knee
min angle, right knee max angle, right knee min angle, left
knee flexion angle, right knee flexion angle, left hip max angle,
left hip min angle, right hip max angle, right hip min angle, left
hip flexion angle and right hip flexion angle. Those discrete
gait parameters was be standardized and uploaded as a feature
matrix for the respective age group, to generate a feature model
using a PCA algorithm. The system directly used the feature
model to analyze the target after it has been generated.

Finally, a standard score was used to assess the disease
state. In this paper, a value called Mahalanobis distance [17],
also known as T2 score, was applied to measure the deviation
between individuals and entity samples. Suppose the target
feature matrix is 7y 4,) and the \; is the it PC’s eigenvalue,
and following equations show the 7' score definition.
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Instead of Euclidean distance, the 72 score takes the vari-
ances of PCs (eigenvalue) in reduced dimensions as a factor,
a higher eigenvalue the more information the corresponding
PC contains [17].

IV. EXPERIMENT
A. Public Datasets

Ghorbani S and Mahdaviani K provides a set of video
datasets [12] with 30 FPS and 800 x 600 resolution pro-
cessed by Visual3D and corresponding joints’ location. The
volunteers in the video samples were required to wear normal
clothing to complete a series of actions and sports movements.
Those actions and sports movements were recorded by video
cameras and motion capture cameras in a space of approx-
imately 3 by 5 meters. Moreover, since the system focused
on walking gait parameters, the selected video samples are
clipped and only save the walking period. In this paper, 9 male
samples aged 21 - 30 years, height 160 - 180 cm, weight 60 -
80 kg were selected to generate feature models, while 8 male



and female samples were used to evaluate the recovered signal
accuracy.

B. Hyper-parameters Setting

To improve the system performance, a series of work was
performed to determine the optimal set of hyper-parameters.
The error rate [5] was defined to quantify the effects of hyper-
parameters in the results.

Zt 1(s,5 () — qgt.5.5(t))?
error = 3 Z Z \/

max(qge.s,;) — min(dgt,s.;)
where S represents the number of samples, The parameter
J represents the number of joint angles. The parameter F'
represents the number of frames for the corresponding sample.
The function ¢, ; is the joint angle time series for the sample
s joint j. The ‘None’ value in raw signal (joint visibility is
below the threshold) is replaced by ‘0’.

According to equation (8), the value of « and 3 have a great
influence on the KF behaviours. To be more specific, a higher
« means less confidence in measurement, while a higher /3
means less confidence in the prediction.

19)

TABLE I
COMPARE KF PERFORMANCE WITH DIFFERENT @ AND 3
(BLAZEPOSE SEGMENTATION MASK = TRUE)

Raw signal « and [ value After KF
a=00001 8=0001  27.67
a = 0.001 8 = 0.001 23.54
Error (%) 33.02 o = 00005 8=0001 2425
a =0.001 8 =001 27.70

Table I illustrates that the KF algorithm performed relatively
better when o = 0.001 and 8 = 0.001. Although the error
rate of the signal after KF is decreased by 10%, there were
undesired noises in the result. Thus, the frequency domain
filter strategy LRMSE was applied to pick principal frequency
components to get a lower error rate signal. In Section II-C2,
two strategies were introduced to implement the frequency
domain filter. A comparison experiment was performed to
evaluate the performance of two filter strategies for the fre-
quency domain filter of de-noising joint angle signal task.

TABLE II
COMPARE PERFORMANCE OF TWO FILTER STRATEGIES
(BLAZEPOSE SEGMENTATION MASK = TRUE, = 0.001, 5 = 0.001)

After KF N components LRMSE PTKC

n=2 24.53 24.53

n=3 23.84 23.84

n=4 23.61 23.61

Error (%) 23.54 n=>5 23.21 24.53
n=6 23.19 23.19

n=7 23.17 23.84

n=2_8 23.25 23.25

Table II demonstrates that LRMSE can improve the accu-
racy slightly (In the case picking 5 or 7 frequency compo-
nents), but the behaviour of LRMSE is the same as PTKC

in most cases since the frequency components with a higher
energy density usually determine the overall trend of the
time domain waveform. If there is a demand for low time
consumption, the PTKC is then the better option.

Left Knee Angle

=== ground truth
raw signal

mm after kalman

= after DFT
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Fig. 4. Recovered signal v.s. raw signal (Subject_24, LRMSE, 5 components).

Fig. 4 displays the joint angle signal in three stages. The KF
algorithm complements the lost angles in the raw signal, and
the signal after DFT demonstrated that the frequency domain
filter smooths the waveform, but it is inevitable for information
losing by applying filter which causes a gap between ground
truth and recovered signal.

According to practice experiences, the BlazePose model and
KF algorithm require an iteration to update internal variables
to enter a stable stage which is, called the convergence period.
The predicted joint angle signal during the convergence period
has a higher error rate, which makes the frequency domain
filter fail to extract the principal frequency components. To
avoid a higher error signal part affecting the whole signal, the
beginning of the signal is usually discarded.

TABLE III
THE ACCURACY COMPARISON FOR DIFFERENT C'ut AND N components

Error (%) Error (%)

Cut (%) Raw signal After KF N components After DFT
n=4 23.61
0 33.02 23.54 n=>5 23.21
n=6 23.19
n=4 23.19
5 33.13 23.34 n=>5 23.13
n==6 23.04
n=4 23.16
10 33.35 23.17 n=>5 22.93
n==6 22.95
n=4 23.20
15 33.76 23.22 n=>5 22.94
n=6 22.96

Table III shows the relation between the clipping percentage
and processed signal accuracy. In practice, the filtered signal



can get relatively lower error rates when cut = 10% and the
number of frequency components is set to 5.

In addition to post-processing part hyper-parameters, the
BlazePose provides segmentation mask (SM), min detection
confidence (MDC), and min tracing confidence (MTC) as ini-
tialization parameters to adjust the performance and computing
resource consumption for different situations. To improve
BlazePose performance, some experiments were taken to find
the suitable parameters setting. Except for those initialization
parameters, the influence of visibility threshold (VT) for joint
landmarks is discussed. The frame lost rate (FL), the number
of detection failed frames divided by the total number of
frames in a video, was used to assess the system performance.

Table IV shows that MTC and MDC seemed to have less
effect on BlazePose performance. However, the VT and SM
are key factors that can greatly affect the result’s accuracy.
Turning on the segmentation mask will improve the raw signal
accuracy in lower VTs, but it decreases the raw signal accuracy
in the higher VT. According to the increment in loss frames
rate for VT = 40% when turning on the segmentation mask,
a possible explanation is that the segmentation mask reduces
the background noise but makes the BlazePose model difficult
to detect the key points.

TABLE IV
SIGNAL ACCURACY FOR DIFFERENT BLAZEPOSE PARAMETERS

Error (%)
SM VT (%) MDC (%) MTC (%) Raw signal After KF FL (%)

20 50 30 22.87 23.57 0
40 30 30 32.83 23.53 1.85

TRUE 40 30 50 32.83 23.53 1.85
40 50 30 33.02 23.54 1.85
40 50 50 33.02 23.54 1.85
20 50 30 24.60 25.54 0
40 30 30 27.67 25.47 0.46

FALSE 40 30 50 27.67 25.47 0.46
40 50 30 28.10 25.51 0.46
40 50 50 28.10 25.51 0.46

An interesting phenomenon is that the lower the VT, the
higher the accuracy of the raw signal, but the signal accuracy
after KF is even worse than the corresponding raw signal. One
possible reason is that the lost joint angle (None) is replaced
by an imprecise predicted value (extreme value). Because
“None” is replaced by 0 when calculating the signal error,
these extreme values are closer to the ground truth than 0, thus,
the error rate at low VT is decreased. However, extreme values
in the raw signal made the KF algorithm trust the measured
values by mistake, resulting in a bias. The evidence is that
the signal error after KF in VT = 20% is higher than that in
VT = 40%.

C. Evaluation of the Assessment System

In this section, an example of the proposed assessment
system is given for assisting healthcare worker, where it
helps the healthcare worker to learn the conditions of patient
with arthritis. According to previous experimental results, the

hyper-parameters are set as follow: M DC = 50%, MTC =
30%, VT = 40%, SM = TRUE, cut = 10%, o = 0.001,
B = 0.001, N components = 5 and the filter strategy is
LRMSE.

Three volunteers recruited from the university (e.g. age
between 21 to 25, male, height between 170 to 180 cm,
weight between 75 to 85 kg) were invited to participate in
this experiment. They are labelled as target A, target B, and
target C. Target A is a sample in which the volunteer does not
have arthritis, while target B is a sample in which the patient
has arthritis and target C is a sample in which the volunteer
has recovered from arthritis.

The signals at the front of the red dash lines in Fig. 6 are
discarded. According to the comparison between joint angle
signal plots in Fig. 6, target B’s left knee flexion declines
sharply from normal gait. The target C has a disease on his
left leg.

The scatter plots in Fig. 5 demonstrate the deviation between
normal samples and targets. Nine Samples (blue points) from
public dataset are scattered in the plots, and the origin point
(red triangle) is the geometrical center of those samples, while
the T2 score describes a kind of distance between target (green
point) and origin point. Three PCs (PCO, PC1, PC2) can
explain around 75% of the samples’ variance, and the 7 score
takes account of the PCs having 90% variance explanation
totally. Target B’s gait gets a higher T2 score (1.64) than
target A (0.76) and target C (0.73), which means the lower
limbs diseases result in abnormal gait.

To summarize, the assessment system can help medical
workers to get essential knowledge about patients’ diseases
and demonstrate visualized reports for further clinical diagno-
sis. The system can be used as a convenient kit for healthcare
staff to keep track of their patients.

V. CONCLUSION

This paper focuses on the work of clinical gait analysis
utilising a human posture detection model, and it also proposes
a post-processing scheme for clinical gait analysis based on
Kalman Filter and Frequency Domain Filters. This paper also
explains how the PCA technique can be used to build feature
models from noisy biomechanical signals. The experiment
results suggest that the proposed post-processing can improve
10% BlazePose’s joint angle prediction accuracy. Moreover,
this post-processing method can also be used to filter and
extract features of joint angle signals for other human body
detection algorithms. Although the accuracy of the assessment
system is currently insufficient to accomplish a fully indepen-
dent clinical analysis task, the system could assist the expert in
clinical diagnosis by analysing the patient’s gait and returning
the visualized reports. Compared with traditional gait analysis
technology, it does not need bulky and expensive equipment
and specific data collection sites, while the replacement is sim-
ple and inexpensive equipment (mobile phones and personal
computers) and user-friendly operation mode (simple program
commands). But, the feature model used in this paper may not
sufficient due to the fact that only joint angle signals are used.
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Fig. 6. The joint angle signals for three targets.

Thus, we will focus on extending the feature model and try to
combine other gait analysis techniques to obtain more effective
information about patients’ gait in the future.
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