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Abstract— Integrating Large Language Models (LLMs) into
modern robotic systems presents significant computational
and energy constraint challenges, particularly for human-
centered robotic applications. This paper presents a novel hard-
ware optimization technique for deploying LLMs on resource-
constrained embedded devices, achieving an up to 77% reduc-
tion in computational latency through an FPGA implemen-
tation in comparison to other popular embedded computing
devices (e.g., CPU and GPUs). Additionally, we demonstrate our
methodology by deploying a LLaMA 2-7B model on a Unitree
Go2 robotic dog integrated with the proposed FPGA platform.
The proposed optimization framework preserves real-time in-
teraction capabilities while significantly reducing computational
and energy overhead, facilitating efficient natural language
processing for human-robot interaction in safety-critical and
dynamic environments. Experimental results demonstrate that
the FPGA-based LLaMA 2-7B implementation achieves up to
6.06-fold and 1.95-fold higher throughput compared to baseline
CPU and GPU implementations while maintaining comparable
inference accuracy. Furthermore, the proposed FPGA design
surpasses existing state-of-the-art FPGA implementations, de-
livering a 30% improvement in computational efficiency.

I. INTRODUCTION

Recent years have witnessed an explosion in the capa-
bilities of Large Language Models (LLMs), with GPT [1],
BERT [2], and LLaMA [3] demonstrating exceptional perfor-
mance across a broad array of Natural Language Processing
(NLP) tasks. Advancements in transformer architectures [4],
[5] have significantly improved both the efficiency and effi-
cacy of language understanding and generation, as exempli-
fied by BERT’s bidirectional training for enhanced contextual
comprehension [6] and GPT’s coherent, contextually relevant
text generation [7]. In parallel, the field of robotics has seen
rapid progress in manipulation, navigation, and interaction
capabilities, driven by machine learning breakthroughs [8].
As robots are deployed in diverse settings, from industrial
facilities to healthcare, there is a growing need for natural
language interfaces to translate complex commands and
enable conversational interaction [9].

Integrating LLMs into robotic platforms promises to
greatly enhance Human-Robot Interaction (HRI) [10]. Rather
than relying on hand-held controllers or pre-coded scripts,
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Fig. 1. Motivation of this research work: FPGA-enhanced HRI aiming
to reduce latency and energy consumption in onboard computing, thereby
improving real-time performance and efficiency.

users can delegate tasks through natural language and receive
contextual explanations or feedback [11], [12]. This capa-
bility is particularly impactful in assistive and accessibility-
focused scenarios, benefiting the elderly, visually impaired
individuals, or users with limited mobility through a voice-
driven interface [13]. By accurately interpreting language
instructions and providing real-time guidance, a robot can
provide transformative assistance in everyday life [14].

However, as shown in Fig. [1] the deployment of LLMs
on physical robots faces the challenge of computational
and energy overhead for current robotic systems. Large-
scale transformer-based architectures require substantial pro-
cessing power and memory bandwidth [15], which can be
prohibitive on mobile robotics platforms where power and
compute resources are limited. While cloud-based inference
offloads heavy computations, it introduces latency, connec-
tivity, and privacy issues. Consequently, onboard inference is
highly desirable yet difficult to achieve efficiently under strict
resource budgets. Researchers have begun exploring hard-
ware acceleration and model compression techniques, such as
pruning, quantization, and knowledge distillation, to reduce
LLM computational requirements without sacrificing per-
formance [16]. FPGAs further facilitate application-specific
parallelism and customizable data pipelines [17], showing
promise for lowering latency and energy consumption when
integrated into real-time control loops [18].

In this paper, we propose a hardware-software co-
optimization framework for efficient, on-board LLM infer-
ence on an AMD® Versal™ VCK190 FPGA platform. Our
primary contributions are two-fold:

o FPGA Acceleration of Transformer-based LLMs: We
detail a design flow that implements quantized, pruned,
and pipeline-optimized variants of the LLaMA 2-7B
implementation on an FPGA, achieving up to 6.06x and



TABLE I

OVERVIEW OF SELECTED COMPUTE-EFFICIENT LLM APPROACHES.

Study Model(s) Platform(s) Inference Speed (TPS) Power / Efficiency Performance Gains
LLaMA ® 7B:57.0+2.4 30B:22.0+0.9 Near-lossless compression;
SPQR [26] (7B, 13B,30B,65B)  OFU (NVIDIAT A100) 13B:44.0£0.5 65B:12.0:0.6 VA up to 4x memory reduction
GPTQ [27] GPT, OPT, BLOOM,  GPU (NVIDIA® A100), A100: 14.08 NA 2-4 bit post-training quant.
LLaMA (up to 175B)  GPU (NVIDIA® A6000) A6000: 7.69 Minimal accuracy drop
) GPU: CPU:
. LLaMA 2 CPU (Inlel® Core™ 19-13900K), 7B: 65.3 7B: 6.961 2-3 bit “extreme” compression;
Additive Quant. [28] 75 "3p 70p) GPU (NVIDIA® RTX™ 3090) 13B: 34.1 13B: 4.180 N/A Up to 8 memory reduction
70B: 6.7 70B: 0.966
L ® ™ . ~45W 1.2x throughput vs. V100S;
FlightLLM [29] LLaMA 2-7B FPGA (Xilinx Al(vi)eo Uﬁgso), Fv[::?sﬁs z’SIOOS' 45) 1.8x better cost efficiency 500x reduction in
vs. GPU (NVIDIA® Tesla® V100S) o 6.0x higher throughput/power compilation overhead
e ® vy ™ Qs 256 tokens: 1024 tokens: Power (W) Efficiency (mWh/token)  2.46X speedup vs. CPU,
HLSTransform [30]  -LMA 2 (F;:)%AIEI)S:E’IXA@V]:T‘?‘W :J()';‘(;‘SC"IH VU9P). - Cpu 2321, CPU: 19.63, CPU 425 0.51100.60 0.53x GPU speed,
ranstorm {> (up to 110M) ( o XTX " 3090), GPU: 107.00, GPU: 107.24, GPU  126.910 130.6 0.33100.34  12.75x less energy vs. CPU,
CPU (Intel™ Xeon ™ E5-2686v4) FPGA: 57.11 FPGA: 57.11 FPGA 9 0.04  825x vs. GPU
. - step=64: 1.478 s ~14-15.8x speedup
LLaMAF [31] (TI"‘]YI;LZ‘MA FPGA (Xilinx® ZCU102) step=128: 1.424 ggi;‘li‘]‘;yo%fg 'TlT,SP%JW vs. PS-only,
. step=256: 1.328 ) o 6.1x better power efficiency
FP32: 50 fﬁ;ﬁ éw; QAT vs. PTQ analysis;
Hasan [32] Various (up to 1B) N/A INTS: 120 INT4: 4W' up to 68% model size
INT4: 150 . reduction

~60% power reduction

1.95% throughput improvements compared to baseline
CPU/GPU implementations while retaining similar infer-
ence accuracy with the original model.

« End-to-End Real-Time Robot Control Pipeline:
Through tight integration with the Unitree Go platform,
we demonstrate low-latency language-based command
processing and control-loop decision-making, which is
crucial for tasks involving human-robot dialogue and
responsive navigation.

These enhancements address the central challenge of real-
time performance while enabling advanced assistive HRI.
Specifically, we illustrate how an embedded LLM on a
quadruped can verbally interact with individuals, parse natural
language requests, and deliver situational guidance in real-
time, a crucial capability for high-stakes environments such as
healthcare facilities, eldercare homes, and public-access build-
ings. Despite clear benefits, the complexity of LLM-based
systems requires careful model compression and accelerator
design to meet tight performance budgets in legged robotics.
Balancing these optimizations with functional requirements,
such as conversational fluency and semantic understanding,
necessitates a comprehensive hardware/software co-design
approach.

The remainder of this paper is organized as follows.
Section [lf reviews related works in LLM optimization and
real-time robotic systems, emphasizing techniques for effi-
cient inference on embedded platforms. Section |l1I| presents
our proposed hardware-software co-design methodology for
implementing LLaMA 2 on an FPGA, detailing both the
model compression pipeline and the accelerator architecture.
Section [[V]introduces our experimental setup, reports quanti-
tative results, and discusses performance trade-offs between
embedded CPU, GPU, and FPGA deployments. Finally,
Section |V] elaborates on the implications for HRI, provides
insights into future directions in resource-constrained LLM-
based robotics, concludes the paper, and outlines potential
avenues for extending this work to larger-scale autonomous
systems.

II. BACKGROUND & LITERATURE REVIEW

Numerous recent works illustrate the growing potential of
LLMs in robotic applications. For instance, Wake et al. [19]
demonstrated a chatbot system that integrates GPT-based
speech generation with co-speech gestures, thereby enhanc-
ing user engagement in conversational settings. Similarly,
Kannan et al. [20] proposed SMART-LLM (Smart Multi-
Agent Robot Task Planning using LLMs), leveraging few-shot
prompts to enable multi-robot task planning and successfully
handling diverse task complexities in both simulation and real-
world conditions. In the context of audio-guided navigation
systems, Sun et al. [21] proposed TrustNavGPT, a method
designed to model uncertainty in spoken instructions, thereby
enhancing decision-making processes and improving resis-
tance to adversarial commands.

Another line of research highlights the path-planning ca-
pabilities of LLMs. Latif [22] explored 3P-LLM, a GPT-3.5—
turbo—based planner that outperforms classic algorithms in
certain configurations thanks to its language-driven reasoning,
despite continuing challenges in geometric accuracy. Mean-
while, Qi et al. [23] offered a comprehensive overview of
integrating LLMs into robotic systems, outlining both task-
oriented (e.g., multi-object rearrangement, navigation) and
model-oriented applications, and proposing a robot intelli-
gence framework that unifies natural language understanding
with the Robot Operating System (ROS). Beyond navigation,
Latif et al. [24] introduced PhysicsAssistant, a multimodal
robot designed for K-12 science education, which combines
GPT-3.5-turbo with computer vision to provide real-time
support in laboratory investigations. Finally, Wang et al. [25]
surveyed the application of multimodal LLMs in robotics,
discussing how visual-language understanding can further
broaden the scope of human-robot collaboration.

Taken together, these studies underscore how advanced
LLMs can transform real-time guidance for the elderly,
visually impaired, and broader assistive scenarios, yet they
also highlight significant computational overhead that must be
addressed for practical, on-device deployment.
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Fig. 2. Overview of the proposed FPGA-based system architecture.

In parallel, compute-efficient solutions for LLMs have
gained attention, with approaches like Post-Training Quantiza-
tion (PTQ), knowledge distillation, and specialized hardware
acceleration. Notably, SpQR [26], GPTQ [27], and Additive
Quantization [28] drive down memory footprints to 2—4 bits
per parameter with minimal accuracy loss. Various teams push
beyond GPUs to FPGAs for real-time, low-power inference.
FlightLLM [29] and HLSTransform [30] map LLaMA 2-
style architectures onto FPGAs for high energy efficiency,
whereas LLaMAF [31] demonstrates pipeline-based quantized
inference on an embedded FPGA. Hasan [32] further compares
PTQ versus Quantization-Aware Training (QAT), emphasizing
that balanced quantization can reduce the model size by
over 60% while retaining acceptable performance. Table
highlights the overview of the compute-efficient solutions
detailed previously. All inference speeds are reported in
tokens per second (TPS). Where multiple model sizes or
configurations are tested, and “N/A” indicates data not reported
in the respective paper.

Despite these breakthroughs, robust co-design, which com-
bines model compression, hardware-based parallelism, and
real-time robotic control, remains underexplored. The remain-
der of this paper addresses this gap: We propose a hardware-
software co-optimization framework for deploying LLMs on
a quadruped robot platform, emphasizing resource reduction
through FPGA acceleration and adaptive low-bit quantization
while preserving advanced HRI functionalities.

III. METHODOLOGY

To match the constraints of deploying LLMs on robots, we
optimized the LLM algorithm with hardware and software co-
design and deployed our design on a heterogeneous FPGA
platform. The following subsections detail the techniques
to enhance our FPGA implementation, ensuring it meets
performance and energy efliciency requirements.

A. LLM Optimization

In mobile robotics applications, more efficient algorithms
lead to lower power consumption and extended operational
time, particularly for computationally intensive models such as
LLMs. For instance, the LLaMA 2 algorithm, which employs
Group Query Attention (GQA), significantly reduces com-
putational demands by operating with a smaller vocabulary,
making it more suitable for deployment in robotic systems. The
most computationally intensive component of LLaMA 2 is the
transformer decoder, as shown in (I)) and (). GQA optimizes
this by reducing the size of matrix weights Wx and Wy, as
well as the dimensions of key K and value V matrices, thereby
lowering computational complexity in subsequent Attention
calculations. Furthermore, we incorporate the KV cache to
eliminate redundant computations of the KV matrix, and
further reduce algorithmic overhead using a sliding window
mechanism since the control command context length of robots
is fairly short. In our design, we constrain the sliding window
size to further optimize computational efficiency in LLaMA
2.

Q = RoPE(XWy), K = RoPE(XWk),V = XW, (1)
Attention(Q, K,V) = SoftMax(QKT)V 2)
H = Attention; (Q, K, V), where i € [1, h] 3)
O = MultiHead(Q, K, V) = Concat(Hy, ..., H))Wp  (4)

B. LLM Quantization

Quantization is a widely used technique for deploying
LLMs, as it reduces computational complexity and lowers
runtime memory consumption. However, global quantization
can degrade model accuracy, particularly in low-bit settings. To
mitigate the latter, we employ a group quantization approach,
which balances computational efficiency and model accuracy.



As shown in (3) to (7), given a weight matrix W, the group
quantization method partitions W into N smaller matrices
{G1,G3,...,GN}. A scaling factor s; is determined from
the maximum absolute value wf;;x in each group G, after
which each weight in the group is quantized into an integer
representation alongside a floating-point scaling factor:

{G1,G3,...,GN} =W ®)
_ nga)lx h (i) _ G 6
Si = 56-h 1 where W, = max(|Gql) (6)
0Q(Gj) = round (E) @)
Si
Wi = {Gq,Gg, . ,Ggl} (8)
b
Size(W9) = " Size(W) + N =4 9)

In matrix multiplications, the integer parts of the inputs are
first multiplied to generate a double-bit-width integer, while
the corresponding scaling factors are also multiplied to obtain
the final output. The resulting double-bit-width integer is then
restored to its original bit-width using an efficient hardware
implementation trick.

This quantization scheme reduces quantization error to
below 0.3%. However, certain LLM layers, such as normal-
ization, softmax, and activation functions, are highly sensitive
to weight precision, making even small errors unacceptable. To
address this, our design employs a mixed-precision strategy,
where group quantization is applied to matrix multiplications
while floating-point operations are preserved for sensitive
layers. This hybrid approach ensures both high model accuracy
and reduced power consumption.

C. Hardware Architecture

To further enhance computational efficiency, we design
a heterogeneous computing platform for mixed-precision
inference, as illustrated in Fig.[2] The platform distributes dif-
ferent computational tasks across specialized processing units:
Rotary Position Embedding (RoPE), activation functions, and
matrix multiplication modules are implemented on the FPGA,
while Softmax, RMSNorm, and Quantization-Dequantization
modules are handled by the Artificial Intelligence Engine
(AIE). The Tokenizer and Embedding modules run on the
CPU.

The matrix multiplication module operates on INT8 weights
and inputs, utilizing corresponding group scaling factors. The
results of multiplying two INT8 matrices are extended to
INT16. To optimize precision and bandwidth usage, we discard
the x LSBs of the output while proportionally amplifying the
scaling factor by 2*. This approach enables us to maintain
perplexity comparable to 8-bit weights and 16-bit activations
while operating entirely with 8-bit weights and activations,
significantly reducing memory bandwidth consumption for
intermediate results transferred between DDR memory and
computation units distributed across the heterogeneous plat-
form.

Although the quantized LLaMA 2 model significantly
reduces memory requirements, the weight files remain too

large for on-chip memory. Thus, all weights are stored in
DDR memory and dynamically streamed into computational
modules via a high-bandwidth Network-on-Chip (NoC) in-
terface. Additionally, RoPE computations involve resource-
intensive operations, such as floating-point power calculations
for embedding values. To optimize FPGA resource usage, we
precompute these values and access them viaa LUT at runtime,
improving performance while reducing computational over-
head. For floating-point computations, this design accelerates
RMSNorm and Softmax using a high-performance AIE matrix
processor. Finally, the CPU orchestrates the execution of all
modules, ensuring maximum computational efficiency across
the heterogeneous architecture.

IV. ExXPERIMENTS AND EVALUATION
A. Evaluation Setup

Models and Constraints: We use LLaMA 2 as the primary
test model, while our platform also supports other LLaMA
variants such as TinyLLaMA and ShearedLLaMA. For quan-
tization, we adopt INT8 grouped quantization for weights to
enable comparisons with embedded CPU and GPU platforms.
Additionally, we evaluate lower-bit quantization schemes down
to INT4. In real-time robot interaction scenarios, input tokens
primarily consist of state data, sensor readings, and task
instructions, requiring shorter sequences but rapid response
times. To optimize computational efficiency, we constrain the
maximum input token length to 1024 and set the sliding
window cache size to 50, reducing computational overhead
while maintaining performance.

CPU and GPU Baselines: For CPU-based evaluations, we
use an Intel® Xeon® Silver 4310 as a baseline, while for GPU-
based evaluation, we deploy Nvidia® Jetson AGX Orin™ (64
GB). Detailed hardware configurations are provided in Ta-
ble [[I. We analyze CPU performance using the C++ imple-
mentation of LLaMA 2 and monitor power consumption via
the powerstat tool. For the Jetson AGX Orin™ platform,
we deploy LLaMA 2 using text—-generation-webui,
an official tool provided by Nvidia®, and measure power
consumption using the Jetson™ Power GUI tool.

FPGA Implementation: Our FPGA-based implementation
is deployed on the AMD® Versal™ VCK190 evaluation plat-
form, with an overview shown in Fig.[2] Since the FPGA logic
performs INT8 arithmetic, while the AIE executes floating-
point arithmetic, we integrate quantization and dequantization
modules to facilitate data transfer between these components.
The AIE consists of 2D arrays of Al Engine tiles and DSPs,
interconnected via a high-bandwidth NoC, and operates at a
clock frequency exceeding 1 GHz. To ensure a fair comparison
across platforms, we constrain the FPGA logic and AIE
modules to a uniform clock frequency of 200 MHz.

B. Performance Evaluation and Analysis

We evaluate the impact of quantization algorithms and
hardware platforms using LLaMA 2 as a benchmark. As shown
in Fig.|3 we assess the quantization results for INT4 and INTS8
bit-widths. Since only the matrix multiplication weights are
quantized to maximize model accuracy, the overall weight size



TABLE II

CompPaRISON OF LLAMA 2-7B IMPLEMENTATION ACROSS DIFFERENT EMBEDDED PLATFORMS

Platform Memory (Bandwidth) Frequency Computing Units Latency Throughput Power Efficiency
Xeon Silver 4310 377GB DDR4 (25.6GB/s) 2100 MHz 12 CPU cores 1.1s 5.16 TPS 120 W 0.04 token/J
Jetson AGX Orin 64GB LPDDRS5 (204.8 GB/s) 1400 MHz 2048 CUDA cores 1.51s 16.07 TPS 35W 0.9 token/J

U280 [29] 8GB HBM + 44MB on-chip memory 225 MHz 3840 DSPs - 55 TPS 45 W 1.22 token/J

Ours 8GB DDR4 + 70MB on-chip memory 200 MHz 1968 DSPs 0.7s 31.29 TPS 1I8W 1.73 token/J

for INT8 quantization is not exactly one-fourth of the original.
However, INT4 quantization achieves a 47% reduction in
model size compared to INTS.

Additionally, we evaluate the effect of quantization group
size on model compression. For the same precision level,
reducing the group size from 128 to 64 results in a 6% increase
in weight size. We further analyze the trade-off between
quantization parameters and model perplexity on the Wikitext
dataset. Our results indicate that INT8 group quantization
increases model complexity by 5% compared to the original
model. Furthermore, perplexity continues to degrade as the
quantization bit-width is reduced.

Despite the small error introduced by group quantization
(0.4% at most), increasing the group size has minimal impact
on model complexity while significantly reducing parameter
count, thereby improving computational performance.
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Fig. 3. Comparison of model size and perplexity across different quantization
precisions.

Looking into the yielded performance, and as observed in
Table |lIl we maintain the same precision level across CPU,
GPU, and FPGA comparisons. For INT8 quantization, the
CPU inference speed is 5.17 TPS, while the Jetson AGX Orin
achieves 16.07 TPS. In comparison, our FPGA implementation
achieves 6.06x and 1.95x% higher throughput, respectively.

In robotic applications, particularly in HRI, the LLM
throughput requirement is mainly dictated by human reading
and speaking speeds. As long as the LLM throughput exceeds
the speaking rate, it meets real-time interaction requirements.
However, beyond throughput, HRI performance is more
sensitive to response latency, which refers to the time delay
between input reception and the start of model output. Our
design, leveraging a streaming compute engine and a high-
performance on-chip network, achieves an output latency of
less than 400 ms.

Additionally, power consumption plays a critical role in
the runtime of robotic systems. Our FPGA implementa-
tion achieves 1.92x more inference calls compared to Jet-

son AGX Orin for the same power consumption, demonstrating
superior efficiency in robotic control. Even when compared
with the state-of-the-art FlightLLM [29] implementation,
which utilizes cloud-based FPGA hardware (U280), our design
achieves a 30% improvement in computational efficiency.
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Fig. 4. A computationally efficient robotic system for real-time assistive
applications.

C. Real-World Deployment and Evaluation

To assess the performance of our locally accelerated LLM
solution in real-world robotic applications, we deployed our
design on a Unitree Go2 integrated with an AMD Versal
VCK190 platform. As illustrated in Fig. 4} voice commands
are transcribed into text using an intelligent microphone and
combined with real-time sensor data from Go2 (e.g., LIDAR)
to form the LLM input.

The processed LLM output consists of two key components:

1) HRI feedback; providing real-time responses to the user.

2) Motion control commands for Go2, which are finally

sent to the motion controller, ensuring adherence to
safety constraints.

For comparison, we conducted the same experiment using
Jetson AGX Orin and also the remote server, where the outputs
were split and transmitted to their respective targets. Our
results indicate that the server-based LLM exhibits similar
inference latency (1.3 s) to CPU baselines, but introduces an
additional 100ms of network transmission delay. The LLM
inference latency remains the dominant factor in the overall
system response time.

Ultimately, our FPGA-based implementation achieves sig-
nificant latency improvement over the server-based solution
the Jetson deployment, demonstrating superior efficiency for
real-time robotic applications.

V. CONCLUSION

This paper presents an FPGA-based optimization technique
for deploying LLMs on resource-constrained robotic systems,
achieving up to a 77% reduction in computational latency
while preserving real-time interaction. Deploying a LLaMA
2-7B model on a Unitree Go2 robotic dog demonstrates



significantly higher throughput than CPU and GPU baselines,
with a 30% improvement over state-of-the-art FPGA imple-
mentations. By combining GQA, group quantization, and
FPGA acceleration, we minimize LLaMA 2-7B’s inference
cost while maintaining dialogue fluency and decision-making
for assistive robotics. These results highlight the potential of
FPGA-accelerated LLMs for efficient, scalable human-robot
interaction in dynamic environments. Future work will explore
the proposed techniques as an all-in-one system to further
enhance efficiency and generalizability across diverse robotic
platforms.
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